

School of Medicine

Efficacy of Respirator Decontamination and Disinfection

Zainab Khatib, Pui Man Chan, Esha Nair, Jazmine Mui-Blackmon, Youcheng Liu

WAYNE STATE
College of Liberal Arts
and Sciences

Department of Family Medicine and Public Health Sciences School of Medicine and College of Liberal Arts and Sciences Detroit, MI

INTRODUCTION

Abstract

- Commonly used respirators in healthcare settings are mostly disposable
- During a public health disaster such as the ongoing COVID-19 pandemic, respirator supply shortages may prove to be a significant problem for most healthcare organizations
- The reuse of disposable N95 respirators might be necessary, even if not preferable, due to supply chain issues
- Challenges of reusing masks raises questions regarding proper disinfectant treatment
- Elastomeric half-mask respirators (EHMRs) and powered air-purifying respirators (PAPRs) also need to be disinfected due to their repeated use or used by multiple workers
- It is currently not well-known what decontamination and disinfection methods are most effective for disposable and reusable respirators

Objective

• To conduct a systematic literature review and evaluate what methods worked the best to decontaminate and disinfect respirators

Impact

- Effective cleaning and disinfection methods allow N95 respirators to be reused
- CDC recommended EHMRs and PAPRs be used, but disinfection is needed

METHODS

Systematic Literature Search

- Databases used: Medline, Google Scholar, JSTOR, etc.
- Years covered: 2011 to 2021
- Language: English
- Keywords used (in combination)
- N95 decontamination and disinfection
- ☐ Elastomeric half-mask respirator (EHMR) decontamination and disinfection
- ☐ Powered air-purifying respirator (PAPR) decontamination and disinfection
- ☐ Respirator reuse
- 458 recorded
- 311 retained
- 251 removed: after screening for relevance
- 60 remain46 removed: more
- 46 removed: more screening for relevance
- 14 left: for a final quantitative analysis

RESPIRATORS

3M Healthcare 1860 N95

Honeywell North RU8500 EHMR

Bullard EVA (evolutionary air)
PAPR (hood)

ILC Dover Sentinel XL HP PAPR Systems (hood)

RESULTS FOR N95 RESPIRATORS

Table 1 Decontamination/Disinfection methods and results for N95 respirators

Author	Year	Methods	Microbes	Effectiveness	Reduction	Comments
Fisher et al.	2010	UVC	MS2 coliphage	Yes	>4 log	Original study Lab and modeling
Lore et al.	2012	UV Microwave steam Moist heat	H5N1 virus	Yes to all	>4 log infective dose	Original study
Mills et al.	2018	UV	H1N1 virus	Yes	>3 log	Original study
Zulauf et.	2020	Microwave steam 1,100 W, single, 3 min	MS2 phage	Yes	5- ~ 6-log10 PFU (99.999%)	Original study
Ibáñez-Cervantes, et al.	2020	H2O2 plasma	SARS-CoV-2 Acinetobacter baumannii Staphylococcus aureus Inoculums of 10 ² to 10 ⁶ CFU	Yes	None detected	Original study
Cadnum et al.	2020	UVC box: 1 min; UVC room 230 min Disinfection cabinet (peracetic acid and hydrogen peroxide, and dry heat), 3 cycles, ~60 min Dry heat	Bacteriophages Phi6 MS2 Methicillin- resistant Staphyloc occus aureus (MRSA)	Yes: cabinet No: UVC No: dry heat	Cabinet: reduction optimal	Original study
Rodriguez-	2020	Various	Various	Yes: UV	Various	Systemic
Martinez et al. Jiang et al.	2021	Time, UVC dry heat	SARS-CoV-2, Bacteria, Fungi	Yes: H2O2 Yes	Bacteria: reduced 8.6 colonies Viruses and fungi: 0	review Field clinical trial
Seresirikachorn et al.	2021	UV Microwave steam Moist heat H2O2	Virus Bacteria	Yes		Systemic review

RESULTS SUMMARY

- N95 respirators:: heat and moisture, microwave-generated steam, ultraviolet germicidal irradiation (UVGI), particularly UVC, plasma peroxide or hydrogen peroxide vapor (VHP) sterilization are effective
- PAPRs: Few studies have been conducted
- A recent laboratory study indicates methods that show a significant reduction in virus load
- o Another study had similar results
- EHMRs: ne study found a mean log reduction in viable influenza of 4.54 ± 0.97 \log_{10}
- Not many studies taken place in hospital settings

FUTURE DIRECTIONS

- More research needs to be conducted in hospital settings
- More studies conducted with EHMRs and PAPRs
- More studies conducted with workers disinfecting respirators, not researchers
- Manufacturers must provide cleaning and disinfection methods based on sciences
 - Make feasible and effective methods for community residents to use at home

CONCLUSIONS

- UV (UVC), dry and moist heat and VHP are effective methods for disinfecting N95 respirators
- More research needs to be done in work settings particularly healthcare settings with healthcare workers conducting the disinfection procedures
- More studies need to be conducted with EHMRs and PAPRs

REFERENCES

- Fisher, E. M., & Shaffer, R. E. (2011). A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. Journal of applied microbiology, 110(1), 287 - 295.
- Lore, M. B., Heimbuch, B. K., Brown, T. L., Wander, J. D., & Hinrichs, S. H. (2012). Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. The Annals of occupational hygiene, 56(1), 92 - 101.
- Mills, D., Harnish, D. A., Lawrence, C., Sandoval-Powers, M., & Heimbuch, B. K. (2018). Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. American journal of infection control, 46(7), e49 - e55.
- Zulauf, K. E., Green, A. B., Nguyen Ba, A. N., Jagdish, T., Reif, D., Seeley, R., Dale, A., & Kirby, J. E. (2020). Microwave-Generated Steam Decontamination of N95 Respirators Utilizing Universally Accessible Materials. mBio, 11(3), e00997-20.
- Ibáñez-Cervantes, G., Bravata-Alcántara, J. C., Nájera-Cortés, A. S., Meneses-Cruz, S., Delgado-Balbuena, L., Cruz-Cruz, C., Durán-Manuel, E. M., Cureño-Díaz, M. A., Gómez-Zamora, E.,
- Cadnum, J. L., Li, D. F., Redmond, S. N., John, A. R., Pearlmutter, B., & Donskey, C. J. (2020). Effectiveness of Ultraviolet-C Light and a High-Level Disinfection Cabinet for Decontamination of N95 Respirators. Pathogens & immunity, 5(1), 52 - 67.
- Rodriguez-Martinez, C. E., Sossa-Briceño, M. P., & Cortés, J. A. (2020). Decontamination and reuse of N95 filtering facemask respirators: A systematic review of the literature. American journal of infection control, 48(12), 1520 - 1532.
- Jiang, Z. Y., Huang, Z., Schmale, I., Brown, E. L., Lorenz, M. C., Patlovich, S. J., Goswami, K., Wilson, H. B., Ahmad, J., Alexander, R., Bryan, W., Burke, L., Citardi, M. J., Elias, J., Ho, T., Jacob, J., Low, G., Miramón, P., Patki, A. U., Yao, W. C., ... Luong, A. U. (2021). N95 respirator reuse, decontamination methods, and microbial burden: A randomized controlled trial. American journal of otolaryngology, 42(5), 103017.
- Seresirikachorn, K., Phoophiboon, V., Chobarporn, T., Tiankanon, K., Aeumjaturapat, S., Chusakul, S., & Snidvongs, K. (2021). Decontamination and reuse of surgical masks and N95 filtering facepiece respirators during the COVID-19 pandemic: A systematic review. Infection control and hospital epidemiology, 42(1), 25 - 30.
- Chakladar, A., Jones, C. G., Siu, J., Hassan-Ibrahim, M. O., & Khan, M. (2021). Microbial contamination of powered air purifying respirators (PAPR) used by healthcare staff during the COVID-19 pandemic: an in situ microbiological study. American journal of infection control, 49(6), 707 - 712.
- Lawrence, C., Harnish, D. A., Sandoval-Powers, M., Mills, D., Bergman, M., & Heimbuch, B. K. (2017).
 Assessment of half-mask elastomeric respirator and powered air-purifying respirator reprocessing for an influenza pandemic. American journal of infection control, 45(12), 1324 1330.